A Problem of Klee on Inner Section Functions of Convex Bodies

نویسندگان

  • R. J. GARDNER
  • D. RYABOGIN
  • V. YASKIN
چکیده

In 1969, Vic Klee asked whether a convex body is uniquely determined (up to translation and reflection in the origin) by its inner section function, the function giving for each direction the maximal area of sections of the body by hyperplanes orthogonal to that direction. We answer this question in the negative by constructing two infinitely smooth convex bodies of revolution about the xn-axis in R, n ≥ 3, one origin symmetric and the other not centrally symmetric, with the same inner section function. Moreover, the pair of bodies can be arbitrarily close to the unit ball.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An algorithm for approximating nondominated points of convex multiobjective optimization problems

‎In this paper‎, ‎we present an algorithm for generating approximate nondominated points of a multiobjective optimization problem (MOP)‎, ‎where the constraints and the objective functions are convex‎. ‎We provide outer and inner approximations of nondominated points and prove that inner approximations provide a set of approximate weakly nondominated points‎. ‎The proposed algorithm can be appl...

متن کامل

On the quadratic support of strongly convex functions

In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.

متن کامل

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

An Analytic Solution to the Busemann-Petty Problem on Sections of Convex Bodies

We derive a formula connecting the derivatives of parallel section functions of an origin-symmetric star body in Rn with the Fourier transform of powers of the radial function of the body. A parallel section function (or (n − 1)dimensional X-ray) gives the ((n − 1)-dimensional) volumes of all hyperplane sections of the body orthogonal to a given direction. This formula provides a new characteri...

متن کامل

Higher order close-to-convex functions associated with Attiya-Srivastava operator

In this paper‎, ‎we introduce a new class$T_{k}^{s,a}[A,B,alpha‎ ,‎beta ]$ of analytic functions by using a‎ ‎newly defined convolution operator‎. ‎This class contains many known classes of‎ ‎analytic and univalent functions as special cases‎. ‎We derived some‎ ‎interesting results including inclusion relationships‎, ‎a radius problem and‎ ‎sharp coefficient bound for this class‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011